Purification and characterization of the selenate reductase from Thauera selenatis.
نویسندگان
چکیده
Thauera selenatis is one of two isolated bacterial species that can obtain energy by respiring anaerobically with selenate as the terminal electron acceptor. The reduction of selenate to selenite is catalyzed by a selenate reductase, previously shown to be located in the periplasmic space of the cell. This study describes the purification of the enzyme from T. selenatis grown anaerobically with selenate. The enzyme is a trimeric alphabetagamma complex with an apparent Mr of 180,000. The alpha, beta, and gamma subunits are 96 kDa, 40 kDa, and 23 kDa, respectively, in size. The selenate reductase contains molybdenum, iron, and acid-labile sulfur as prosthetic group constituents. UV-visible absorption spectroscopy also revealed the presence of one cytochrome b per alphabetagamma complex. The Km for selenate was determined to be 16 microM, and the Vmax was 40 micromol/min/mg of protein. The enzyme is specific for the reduction of selenate; nitrate, nitrite, chlorate, and sulfate were not reduced at detectable rates. These studies constitute the first description of a selenate reductase, which represents a new class of enzymes. The significance of this enzyme in relation to cell growth and energy generation is discussed.
منابع مشابه
Quinol-cytochrome c oxidoreductase and cytochrome c4 mediate electron transfer during selenate respiration in Thauera selenatis.
Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the ...
متن کاملBiomineralization of selenium by the selenate-respiring bacterium Thauera selenatis.
Bacterial anaerobic respiration using selenium oxyanions as the sole electron acceptor primarily result in the precipitation of selenium biominerals observed as either intracellular or extracellular selenium deposits. Although a better understanding of the enzymology of bacterial selenate reduction is emerging, the processes by which the selenium nanospheres are constructed, and in some cases s...
متن کاملResolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions.
Enterobacter cloacae SLD1a-1 is capable of reductive detoxification of selenate to elemental selenium under aerobic growth conditions. The initial reductive step is the two-electron reduction of selenate to selenite and is catalyzed by a molybdenum-dependent enzyme demonstrated previously to be located in the cytoplasmic membrane, with its active site facing the periplasmic compartment (C. A. W...
متن کاملIdentification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition.
Bacterial strain, T1, originally isolated by P.J. Evans on the basis of its capacity for toluene degradation under denitrifying conditions, has been classified as Thauera aromatica. In a comprehensive study of strains of this species, it was found that the cells have a different type of flagellar insertion from that of cells of the type species of the genus, Thauera selenatis, suggesting the co...
متن کاملA bacterial process for selenium nanosphere assembly.
During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 38 شماره
صفحات -
تاریخ انتشار 1997